The D'Esposito Lab is a cognitive neuroscience research laboratory within the
Helen Wills Neuroscience Institute
and the Department of Psychology.

Recent Publications

Miller, JA, Voorhies WI, Lurie DJ, D'Esposito M, Weiner KS.  2021.  Overlooked tertiary sulci serve as a meso-scale link between microstructural and functional properties of human lateral prefrontal cortex., 2021 Jan 15. The Journal of neuroscience : the official journal of the Society for Neuroscience. Abstract

Understanding the relationship between neuroanatomy and function in portions of cortex that perform functions largely specific to humans such as lateral prefrontal cortex (LPFC) is of major interest in systems and cognitive neuroscience. When considering neuroanatomical-functional relationships in LPFC, shallow indentations in cortex known as tertiary sulci have been largely unexplored. Here, by implementing a multi-modal approach and manually defining 936 neuroanatomical structures in 72 hemispheres (in both males and females), we show that a subset of these overlooked tertiary sulci serve as a meso-scale link between microstructural (myelin content) and functional (network connectivity) properties of human LPFC in individual participants. For example, the () is a tertiary sulcus with three components that differ in their myelin content, resting state connectivity profiles, and engagement across meta-analyses of 83 cognitive tasks. Further, generating microstructural profiles of myelin content across cortical depths for each component and the surrounding middle frontal gyrus (MFG) shows that both gyral and sulcal components of the MFG have greater myelin content in deeper compared to superficial layers and that the myelin content in superficial layers of the gyral components is greater than sulcal components. These findings support a classic, yet largely unconsidered theory that tertiary sulci may serve as landmarks in association cortices, as well as a modern cognitive neuroscience theory proposing a functional hierarchy in LPFC. As there is a growing need for computational tools that automatically define tertiary sulci throughout cortex, we share probabilistic sulcal maps with the field.: Lateral prefrontal cortex (LPFC) is critical for functions that are thought to be specific to humans compared to other mammals. However, relationships between fine-scale neuroanatomical structures largely specific to hominoid cortex and functional properties of LPFC remain elusive. Here, we show that these structures, which have been largely unexplored throughout history, surprisingly serve as markers for anatomical and functional organization in human LPFC. These findings have theoretical, methodological, developmental, and evolutionary implications for improved understanding of neuroanatomical-functional relationships not only in LPFC, but also in association cortices more broadly. Finally, these findings ignite new questions regarding how morphological features of these neglected neuroanatomical structures contribute to functions of association cortices that are critical for human-specific aspects of cognition.

Cook, PF, Hoard VA, Dolui S, deB Frederick B, Redfern R, Dennison SE, Halaska B, Bloom J, Kruse-Elliott KT, Whitmer ER, Trumbull EJ, Berns GS, Detre JA, D'Esposito M, Gulland FMD, Reichmuth C, Johnson SP, Field CL, Inglis BA.  2021.  An MRI protocol for anatomical and functional evaluation of the California sea lion brain., 2021 Feb 10. Journal of neuroscience methods. :109097. Abstract

Domoic acid (DOM) is a neurotoxin produced by some harmful algae blooms in coastal waters. California sea lions (Zalophus californianus) exposed to DOM often strand on beaches where they exhibit a variety of symptoms, including seizures. These animals typically show hippocampal atrophy on MRI scans.

Turner, GR, Novakovic-Agopian T, Kornblith ES, Adnan A, Madore M, Chen AJ-W, D'Esposito M.  2020.  Goal-oriented attention regulation (GOALS) training in older adults. Aging and Mental Health. 24(3):464-473.2020_turner.pdf
Toker, D, Sommer FT, D'Esposito M.  2020.  A simple method for detecting chaos in nature., 2020. Communications Biology. 3:11. Abstract2020_toker.pdf

Chaos, or exponential sensitivity to small perturbations, appears everywhere in nature. Moreover, chaos is predicted to play diverse functional roles in living systems. A method for detecting chaos from empirical measurements should therefore be a key component of the biologist's toolkit. But, classic chaos-detection tools are highly sensitive to measurement noise and break down for common edge cases, making it difficult to detect chaos in domains, like biology, where measurements are noisy. However, newer tools promise to overcome these limitations. Here, we combine several such tools into an automated processing pipeline, and show that our pipeline can detect the presence (or absence) of chaos in noisy recordings, even for difficult edge cases. As a first-pass application of our pipeline, we show that heart rate variability is not chaotic as some have proposed, and instead reflects a stochastic process in both health and disease. Our tool is easy-to-use and freely available.

Furman, DJ, White RL, Naskolnakorn JR, Ye S, Kayser AS, D'Esposito M.  2020.  Effects of dopaminergic drugs on cognitive control processes vary by genotype. Journal of Cognitive Neuroscience. 32(5):804-821.2020_furman.pdf