Publications

Export 308 results:

Categories: PET | attention | cognition | dopamine | motivation | striatum | fMRI | Clinical | review
Sort by: Author Title Type [ Year  (Asc)]
2014
Bloemendaal, M, van Schouwenburg MR, Miyakawa A, Aarts E, D'Esposito M, Cools R.  2014.  Dopaminergic modulation of distracter-resistance and prefrontal delay period signal., 2014 Oct 11. Psychopharmacology. Abstract

Dopamine has long been implicated in the online maintenance of information across short delays. Specifically, dopamine has been proposed to modulate the strength of working memory representations in the face of intervening distracters. This hypothesis has not been tested in humans. We fill this gap using pharmacological neuroimaging. Healthy young subjects were scanned after intake of the dopamine receptor agonist bromocriptine or placebo (in a within-subject, counterbalanced, and double-blind design). During scanning, subjects performed a delayed match-to-sample task with face stimuli. A face or scene distracter was presented during the delay period (between the cue and the probe). Bromocriptine altered distracter-resistance, such that it impaired performance after face relative to scene distraction. Individual differences in the drug effect on distracter-resistance correlated negatively with drug effects on delay period signal in the prefrontal cortex, as well as on functional connectivity between the prefrontal cortex and the fusiform face area. These results provide evidence for the hypothesis that dopaminergic modulation of the prefrontal cortex alters resistance of working memory representations to distraction. Moreover, we show that the effects of dopamine on the distracter-resistance of these representations are accompanied by modulation of the functional strength of connections between the prefrontal cortex and stimulus-specific posterior cortex.

Fegen, D, Buchsbaum BR, D'Esposito M.  2014.  The effect of rehearsal rate and memory load on verbal working memory., 2014 Oct 23. NeuroImage. 105C:120-131. Abstract

While many neuroimaging studies have investigated verbal working memory (WM) by manipulating memory load, the subvocal rehearsal rate at these various memory loads has generally been left uncontrolled. Therefore, the goal of this study was to investigate how mnemonic load and the rate of subvocal rehearsal modulate patterns of activity in the core neural circuits underlying verbal working memory. Using fMRI in healthy subjects, we orthogonally manipulated subvocal rehearsal rate and memory load in a verbal WM task with long 45-s delay periods. We found that middle frontal gyrus (MFG) and superior parietal lobule (SPL) exhibited memory load effects primarily early in the delay period and did not exhibit rehearsal rate effects. In contrast, we found that inferior frontal gyrus (IFG), premotor cortex (PM) and Sylvian-parietal-temporal region (area Spt) exhibited approximately linear memory load and rehearsal rate effects, with rehearsal rate effects lasting through the entire delay period. These results indicate that IFG, PM and area Spt comprise the core articulatory rehearsal areas involved in verbal WM, while MFG and SPL are recruited in a general supervisory role once a memory load threshold in the core rehearsal network has been exceeded.

D'Esposito, M, Postle BR.  2014.  The Cognitive Neuroscience of Working Memory., 2014 Sep 19. Annual review of psychology. Abstract

For more than 50 years, psychologists and neuroscientists have recognized the importance of a working memory to coordinate processing when multiple goals are active and to guide behavior with information that is not present in the immediate environment. In recent years, psychological theory and cognitive neuroscience data have converged on the idea that information is encoded into working memory by allocating attention to internal representations, whether semantic long-term memory (e.g., letters, digits, words), sensory, or motoric. Thus, information-based multivariate analyses of human functional MRI data typically find evidence for the temporary representation of stimuli in regions that also process this information in non-working memory contexts. The prefrontal cortex (PFC), on the other hand, exerts control over behavior by biasing the salience of mnemonic representations and adjudicating among competing, context-dependent rules. The "control of the controller" emerges from a complex interplay between PFC and striatal circuits and ascending dopaminergic neuromodulatory signals. Expected final online publication date for the Annual Review of Psychology Volume 66 is November 30, 2014. Please see http://www.annualreviews.org/catalog/pubdates.aspx for revised estimates.

2015
Launer, LJ, Lewis CE, Schreiner PJ, Sidney S, Battapady H, Jacobs DR, Lim KO, D'Esposito M, Zhang Q, Reis J, Davatzikos C, Bryan NR.  2015.  Vascular Factors and Multiple Measures of Early Brain Health: CARDIA Brain MRI Study., 2015. PloS one. 10(3):e0122138. Abstract

To identify early changes in brain structure and function that are associated with cardiovascular risk factors (CVRF).

Haight, TJ, Bryan NR, Erus G, Davatzikos C, Jacobs DR, D'Esposito M, Lewis CE, Launer LJ.  2015.  Vascular risk factors, cerebrovascular reactivity, and the default-mode brain network., 2015 Apr 23. NeuroImage. Abstract

Cumulating evidence from epidemiologic studies implicates cardiovascular health and cerebrovascular function in several brain diseases in late life. We examined vascular risk factors with respect to a cerebrovascular measure of brain functioning in subjects in mid-life, which could represent a marker of brain changes in later life. Breath-hold functional MRI (fMRI) was performed in 541 women and men (mean age 50.4 years) from the Coronary Artery Risk Development in Young Adults (CARDIA) Brain MRI sub-study. Cerebrovascular reactivity (CVR) was quantified as percentage change in blood-oxygen level dependent (BOLD) signal in activated voxels, which was mapped to a common brain template and log-transformed. Mean CVR was calculated for anatomic regions underlying the default-mode network (DMN) - a network implicated in AD and other brain disorders - in addition to areas considered to be relatively spared in the disease (e.g. occipital lobe), which were utilized as reference regions. Mean CVR was significantly reduced in the posterior cingulate/precuneus (β = -0.063, 95% CI: -0.106, -0.020), anterior cingulate (β = -0.055, 95% CI: -0.101, -0.010), and medial frontal lobe (β = -0.050, 95% CI: -0.092, -0.008) relative to mean CVR in the occipital lobe, after adjustment for age, sex, race, education, and smoking status, in subjects with pre-hypertension/hypertension compared to normotensive subjects. By contrast, mean CVR was lower, but not significantly, in the inferior parietal lobe (β = -0.024, 95% CI: -0.062, 0.014) and the hippocampus (β = -0.006, 95% CI: -0.062, 0.050) relative to mean CVR in the occipital lobe. Similar results were observed in subjects with diabetes and dyslipidemia compared to those without these conditions, though the differences were non-significant. Reduced CVR may represent diminished vascular functionality for the DMN for individuals with prehypertension/ hypertension in mid-life, and may serve as a preclinical marker for brain dysfunction in later life.

Bahlmann, J, Aarts E, D'Esposito M.  2015.  Influence of motivation on control hierarchy in the human frontal cortex., 2015 Feb 18. The Journal of neuroscience : the official journal of the Society for Neuroscience. 35(7):3207-17. Abstract

The frontal cortex mediates cognitive control and motivation to shape human behavior. It is generally observed that medial frontal areas are involved in motivational aspects of behavior, whereas lateral frontal regions are involved in cognitive control. Recent models of cognitive control suggest a rostro-caudal gradient in lateral frontal regions, such that progressively more rostral (anterior) regions process more complex aspects of cognitive control. How motivation influences such a control hierarchy is still under debate. Although some researchers argue that both systems work in parallel, others argue in favor of an interaction between motivation and cognitive control. In the latter case it is yet unclear how motivation would affect the different levels of the control hierarchy. This was investigated in the present functional MRI study applying different levels of cognitive control under different motivational states (low vs high reward anticipation). Three levels of cognitive control were tested by varying rule complexity: stimulus-response mapping (low-level), flexible task updating (mid-level), and sustained cue-task associations (high-level). We found an interaction between levels of cognitive control and motivation in medial and lateral frontal subregions. Specifically, flexible updating (mid-level of control) showed the strongest beneficial effect of reward and only this level exhibited functional coupling between dopamine-rich midbrain regions and the lateral frontal cortex. These findings suggest that motivation differentially affects the levels of a control hierarchy, influencing recruitment of frontal cortical control regions depending on specific task demands.

Arnemann, KL, Chen AJ-W, Novakovic-Agopian T, Gratton C, Nomura EM, D'Esposito M.  2015.  Functional brain network modularity predicts response to cognitive training after brain injury., 2015 Mar 18. Neurology. Abstract

We tested the value of measuring modularity, a graph theory metric indexing the relative extent of integration and segregation of distributed functional brain networks, for predicting individual differences in response to cognitive training in patients with brain injury.

Wallace, DL, Aarts E, d'Oleire Uquillas F, Dang LC, Greer SM, Jagust WJ, D'Esposito M.  2015.  Genotype status of the dopamine-related catechol-O-methyltransferase (COMT) gene corresponds with desirability of "unhealthy" foods., 2015 May 8. Appetite. Abstract

The role of dopamine is extensively documented in weight regulation and food intake in both animal models and humans. Yet the role of dopamine has not been well studied in individual differences for food desirability. Genotype status of the dopamine-related catechol-O-methyltransferase (COMT) gene has been shown to influence dopamine levels, with greater COMT enzymatic activity in val/val individuals corresponding to greater degradation of dopamine. Decreased dopamine has been associated with poorer cognitive control and diminished goal-directed behavior in various behavioral paradigms. Additionally, dopaminergic-rich regions such as the frontal cortex and dorsal striatum have been shown to be important for supporting food-related decision-making. However, the role of dopamine, as assessed by COMT genotype status, in food desirability has not been fully explored. Therefore, we utilized an individual's COMT genotype status (n=61) and investigated food desirability based on self-rated "healthy" and "unhealthy" food perceptions. Here we found val/val individuals (n=19) have greater desirability for self-rated "unhealthy" food items, but not self-rated "healthy" food items, as compared to val/met (n=24) and met/met (n=18) individuals (p<0.005). Utilizing an objective health measure for the food items, we also found val/val and val/met individuals have greater desirability for objectively defined "unhealthy" food items, as compared to met/met individuals (p<0.01). This work further substantiates a role of dopamine in food-related behaviors and more specifically in relationship to food desirability for "unhealthy" food items.