The D'Esposito Lab is a cognitive neuroscience research laboratory within the
Helen Wills Neuroscience Institute
and the Department of Psychology.

Recent Publications

Toker, D, Sommer FT, D'Esposito M.  2020.  A simple method for detecting chaos in nature., 2020. Communications biology. 3:11. Abstract

Chaos, or exponential sensitivity to small perturbations, appears everywhere in nature. Moreover, chaos is predicted to play diverse functional roles in living systems. A method for detecting chaos from empirical measurements should therefore be a key component of the biologist's toolkit. But, classic chaos-detection tools are highly sensitive to measurement noise and break down for common edge cases, making it difficult to detect chaos in domains, like biology, where measurements are noisy. However, newer tools promise to overcome these limitations. Here, we combine several such tools into an automated processing pipeline, and show that our pipeline can detect the presence (or absence) of chaos in noisy recordings, even for difficult edge cases. As a first-pass application of our pipeline, we show that heart rate variability is not chaotic as some have proposed, and instead reflects a stochastic process in both health and disease. Our tool is easy-to-use and freely available.

Kimbrough, A, Lurie DJ, Collazo A, Kreifeldt M, Sidhu H, Macedo GC, D'Esposito M, Contet C, George O.  2020.  Brain-wide functional architecture remodeling by alcohol dependence and abstinence., 2020 Jan 14. Proceedings of the National Academy of Sciences of the United States of America. Abstract

Alcohol abuse and alcohol dependence are key factors in the development of alcohol use disorder, which is a pervasive societal problem with substantial economic, medical, and psychiatric consequences. Although our understanding of the neurocircuitry that underlies alcohol use has improved, novel brain regions that are involved in alcohol use and novel biomarkers of alcohol use need to be identified. The present study used a single-cell whole-brain imaging approach to 1) assess whether abstinence from alcohol in an animal model of alcohol dependence alters the functional architecture of brain activity and modularity, 2) validate our current knowledge of the neurocircuitry of alcohol abstinence, and 3) discover brain regions that may be involved in alcohol use. Alcohol abstinence resulted in the whole-brain reorganization of functional architecture in mice and a pronounced decrease in modularity that was not observed in nondependent moderate drinkers. Structuring of the alcohol abstinence network revealed three major brain modules: 1) extended amygdala module, 2) midbrain striatal module, and 3) cortico-hippocampo-thalamic module, reminiscent of the three-stage theory. Many hub brain regions that control this network were identified, including several that have been previously overlooked in alcohol research. These results identify brain targets for future research and demonstrate that alcohol use and dependence remodel brain-wide functional architecture to decrease modularity. Further studies are needed to determine whether the changes in coactivation and modularity that are associated with alcohol abstinence are causal features of alcohol dependence or a consequence of excessive drinking and alcohol exposure.

Hwang, K, Shine JM, Cellier D, D'Esposito M.  2019.  The Human Intraparietal Sulcus Modulates Task-Evoked Functional Connectivity., 2019 Jul 29. Cerebral cortex (New York, N.Y. : 1991). Abstract

Past studies have demonstrated that flexible interactions between brain regions support a wide range of goal-directed behaviors. However, the neural mechanisms that underlie adaptive communication between brain regions are not well understood. In this study, we combined theta-burst transcranial magnetic stimulation (TMS) and functional magnetic resonance imaging to investigate the sources of top-down biasing signals that influence task-evoked functional connectivity. Subjects viewed sequences of images of faces and buildings and were required to detect repetitions (2-back vs. 1-back) of the attended stimuli category (faces or buildings). We found that functional connectivity between ventral temporal cortex and the primary visual cortex (VC) increased during processing of task-relevant stimuli, especially during higher memory loads. Furthermore, the strength of functional connectivity was greater for correct trials. Increases in task-evoked functional connectivity strength were correlated with increases in activity in multiple frontal, parietal, and subcortical (caudate and thalamus) regions. Finally, we found that TMS to superior intraparietal sulcus (IPS), but not to primary somatosensory cortex, decreased task-specific modulation in connectivity patterns between the primary VC and the parahippocampal place area. These findings demonstrate that the human IPS is a source of top-down biasing signals that modulate task-evoked functional connectivity among task-relevant cortical regions.

Novakovic-Agopian, T, Kornblith E, Abrams G, McQuaid JR, Posecion L, Burciaga J, D'Esposito M, Chen AJW.  2019.  Long-term effects of executive function training among veterans with chronic TBI., 2019 Aug 19. Brain injury. :1-9. Abstract

: To investigate long-term effects of GOALS executive function training in Veterans with chronic TBI. In a recently completed study Veterans with chronic TBI showed improvement immediately post-GOALS but not control training on measures of executive function, functional task performance, and emotion regulation. We now examine the long-term maintenance of post-GOALS training changes in the same sample. : San Francisco VA Health Care System (SFVAHCS), and VA Northern California Health-Care System (VANCHS) in Martinez. : 24 Veterans with chronic TBI were assessed at baseline, post-GOALS training, and long-term follow-up 6+ months following completion of training with a structured telephone interview, neuropsychological and complex functional performance measures, and self-report measures of daily and emotional functioning. : Participants reported an increased likelihood of involvement in competitive employment/volunteering at follow-up (61%) compared to baseline (26%; χ2 = 5.66, < .01, ѱ = .35). Repeated measures MANOVAS indicated improvement on attention/executive function (F = 13.85, < .01, partial η2 = .42), complex functional task performance (GPS Total: F = 9.12, < .01, partial η2 = .38) and daily functioning (MPAI Total: F = 3.23, < .05, partial η2 = .21), and reduction in overall mood disturbance (POMS Total: F = 3.42, < .05, partial η2 = .22) at follow-up relative to baseline. : Training in attention regulation applied to participant-defined goals is associated with meaningful long-term improvement in cognitive skills, emotion regulation, and daily functioning in Veterans with chronic TBI.

Kornblith, E, Posecion L, Abrams G, Chen AJ-W, Burciaga J, D'Esposito M, Novakovic-Agopian T.  2019.  Long-Term Effect of Cognitive Rehabilitation Regardless of Prerehabilitation Cognitive Status for Veterans with TBI., 2019 Aug 28. Applied neuropsychology. Adult. :1-13. Abstract

Persisting difficulties in executive functioning (EF) are common after traumatic brain injury (TBI). Cognitive rehabilitation can be effective, but the impact of pretreatment neurocognitive functioning on long term effects of rehabilitation is unknown. Because this information can impact treatment planning, we examined the relationship between prerehabilitation neurocognitive status and long-term effects of EF training. Archival data were drawn from a trial of Goal-Oriented Attentional Self-Regulation group-format EF training for Veterans with TBI [mild-severe; 11 years postinjury; 96% male, 32% nonwhite, 14.21 years education ( 1.72), 41.13 years old ( 11.39)]. Using prerehabilitation neurocognitive performance, participants were clustered into cognitive difficulty (CD) and cognitively normal (CN) groups. Six-plus months after EF rehabilitation training, participants completed a structured telephone interview and/or in-person cognitive/functional/emotional assessment using standardized measures of cognitive, daily, and emotional functioning frequently employed in TBI research. At 6+ months post-EF training compared to prerehabilitation, CD and CN improved in multiple cognitive (Overall Attention/EF: (1,18) = 26.17, partial  = .59; Total Memory: (1,18) = 6.82, partial  = .28) and functional domains (Goal Processing Scale [GPS] total score: (1,15) = 6.71, partial  = .31). CD improved more than CN on Learning and Memory functional domain [F(1,15) = 6.10, partial  = .29]. Results of our small archival analysis raise the possibility that Veterans with chronic TBI may demonstrate long-term effects of EF training.